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CALCULATION OF THE HYDRODYNAMIC INTERACTION

OF BLADE CASCADES WITH CONSIDERATION FOR THE DIFFUSION

OF UNSTEADY WAKES

UDC 533.6.011V. A. Yudin

A semianalytical method was developed to calculate the hydrodynamic interaction of two blade cas-
cades moving relative to one another. The potential perturbation of the flow by the cascades and
the vortex perturbation due to blade edge wakes are taken into account. Along with the steady wakes
caused by boundary layer separation from the blade cascades, allowance is made of the unsteady
wakes separating from the blade trailing edges because of change in velocity circulation on them.
The unsteady wakes are calculated with allowance for their diffusion in the presence of flow viscosity
using approximate boundary-layer theory. The method is implemented as a program for calculating
the unsteady hydrodynamic characteristics of blade cascades on a personal computer. Examples of
calculation and a comparison with experiment are given.

Introduction. Calculation of the hydrodynamic interaction of cascades by numerical simulation of the
complete Euler or Navier–Stokes equations is a difficult computational problem [1–4]. Available programs require
continuous operation of the most powerful computers over tens or even hundreds of hours. Moreover, the calculation
time increases considerably with decrease in blade-to-blade clearance and increase in the number of rotor and stator
blades.

For the problem of potential cascade flow in a quasisteady formulation, Saren [5] proposed a semianalytical
method of solution based on representation of the relative fluid velocity on blades in the form of a series in powers of
a small parameter determined by the blade-to-blade clearance. Using this method in a linear approximation, Yudin
[6] took into account the steady wakes caused by boundary layer separation from blade cascades and developed a
program for routine calculations of unsteady hydrodynamic characteristics on personal computers [7]. The problem
was also solved in a quasisteady formulation, i.e., ignoring the unsteady vortex wakes separating from blade cascades
because of change in fluid velocity circulation. However, new experimental data [8] indicate that these wakes,
diffusing into the flow, are a main cause of losses of total pressure and decrease in the efficiency of the cascade
stages.

In the present paper, along with steady wakes, we take into account unsteady wakes (according to the
Thomson theorem on the conservation of velocity circulation over fluid contours). Under the assumption of small
intensity of these wakes, their diffusion is allowed for within the framework of boundary-layer theory. As in [5, 6],
the problem reduces to a system of recurrent formulas for the coefficient of expansion of the relative fluid velocity
over blade cascades. The program for calculating unsteady hydrodynamic characteristics does not require large
expenditures of time and memory, and, hence, can be implemented on personal computers.

Basic Assumptions. In the plane of the complex variable z = x + iy, we consider a double-row blade
cascade in an incompressible fluid flow having specified velocity V−∞ at infinity ahead of the cascade. Let cascade
No. 2, located downstream, move relative to cascade No. 1 with constant velocity u along the y axis (Fig. 1). We
assume that the blade cascades are smooth and have sharp trailing edges.
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Fig. 1. Two-row blade cascade.

In the present formulation of the problem, the hydrodynamic interaction of the cascades is due to the
following main factors: 1) potential perturbation, which propagates both downstream and upstream and is caused by
deceleration and acceleration of the flow in the neighborhood of the blades of both cascades; 2) vortex perturbation
due to boundary layer separation from the blades of cascade No. 1 (steady vortex wakes), which propagates only
downstream and interacts with the blades of cascade 2; 3) perturbation due to the unsteady vortex wakes separating
from the blade trailing edges of both cascades because of change in velocity circulation on them.

We consider small perturbations of the main flow by the blade cascades (the blades are rather thin, slightly
curved, and are streamlined at small angles of attack). In this connection, we assume that the vortex wakes are
located along the critical streamlines of the main flow through the cascades (the evolution of the wakes behind
cascade No. 1 during passage through cascade No. 2 is neglected). In calculating the perturbation due to the
unsteady vortex wakes behind cascade No. 2 and the perturbation upstream of the unsteady vortex wakes behind
cascade No. 1, we simulate them by velocity discontinuity lines, as is done within the framework of the ideal fluid
model. Calculations for the unsteady vortex wakes downstream of cascade No. 1 are performed with allowance for
the diffusion of these wakes in the presence of flow viscosity [9]. The effect of the unsteady vortex wakes behind
cascade No. 2 on the fluid flow in the region of cascade No. 1 is ignored.

Method of Solution. For each time t, the complex fluid velocity at the point z of the field flow is written
as

V (z, t) = v(z, t) + J(z) + J1(z, t) + J2(z, t). (1)

Here v is a function that is analytical in z everywhere outside the double-row cascade (v determines the potential
perturbation of the flow by the cascades), J is a piecewise-continuous function that determines the complex fluid
velocity behind cascade No. 1 in the absence of cascade No. 2 (J is generated by the steady vortex wakes behind
cascade No. 1), and J1 and J2 correspond to the velocity fields produced by the unsteady wakes behind cascade
Nos. 1 and 2. The function J1 is analytical in z on the left half-plane x < −∆/2, and J2 is analytical in z on
the right half-plane x > −∆/2, except on the velocity discontinuity lines behind cascade No. 2 (∆ is the cascade
spacing).

In representation (1), the function v(z, t) should satisfy the following conditions:
1) The condition of nonpenetration of the fluid on the blade cascades

Imi {v(z, t) exp (iαµ(σ))} =

{
−Imi {J1(z) exp (iα1(σ))}, z ∈ L1k,

−u cosα2(σ)− Imi {J(z) + J1(z, t) + J2(z, t)}, z ∈ L2k,
(2)

where µ is the cascade number, k is the blade cascade number, Lµk is the contour of the kth blade of the µth
cascade, αµ(σ) is the angle formed by the tangent to the blade Lµk at the point z and in the positive direction of
the x axis, and σ is the arc length of the blade contour reckoned from the trailing edge in the positive direction
(counterclockwise);
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2) The condition of constancy of the fluid velocity at infinity ahead of the cascades

lim
x→−∞

v(z, t) = V−∞; (3)

3) The condition of periodicity of the flow in the y direction

v(z, t) = v(z + iL, t) = v(z, t+ L/u), (4)

where L = N1h1 = N2h2, h1 and h2 are the blade spacings for the cascades, and N1 and N2 are the numbers of
blades in the periods of the double-row cascade;

4) Joukowski–Chaplygin condition of the finiteness of velocity at the sharp trailing edges of the blade
cascades.

According to (3) and (4), the function v(z, t) is defined by the Cauchy formula for periodic functions:

v(z, t) =
1

2Li

∫
L1

N1−1∑
m=0

v1m(ζ1, t)
[
cothπ

(z − ζ1 + ∆/2
L

− i m
N1

)
+ 1
]
dζ1

+
1

2Li

∫
L2

N2−1∑
m=0

v2m(ζ2, t)
[
cothπ

(z − ζ2 − iut−∆/2
L

− i m
N2

)
+ 1
]
dζ2 + V−∞. (5)

Here L1 and L2 are the initial blades of the first and second cascades displaced along the x axis by ∆/2 and −∆/2,
respectively, at the time t = 0, vµk(ζµ, t) = v(zk, t), z1 = ζ1 + ikh1−∆/2 (ζ1 ∈ L1), and z2 = ζ2 + ikh2 + iut+ ∆/2
(ζ2 ∈ L2).

In the linear formulation of the problem considered, the influence functions of the unsteady vortex wakes
Jµ(zµ, t) for the values zµ = xµ + jyµ in the regions x1 < −∆/2 and x2 > −∆/2 are expressed by the integrals [10]

Jµ(zµ, t) =
1

2Li

∞∫
0

Nµ−1∑
m=0

γµm(ζµ, t)
[
cothπ

(zµ − ζµ(τ)
L

− i m
Nµ

)
+ 1
]
dτ, (6)

where τ is the angular position on the velocity discontinuity line behind the blade Lµ reckoned from its trailing
edge. The intensity γµm(ζµ(τ), t) of the unsteady vortex wake at the point ζµ(τ) at time t is defined by the formula

γµm(ζµ(τ), t) = − 1
V0µ(τ)

∂Γµm
∂t

∣∣∣
t=t1

(
t = t1 + T (τ), T (τ) =

τ∫
0

dτ

V0µ(τ)

)
. (7)

Here Γµm(t) =
∫
Lµ

Vµm(s) ds is the fluid velocity circulation around the mth blade of the µth cascade; V0µ(τ) is the

relative velocity of the main steady flow (corresponding to ∆ =∞) on the critical streamline behind the blade Lµ
in a coordinate system attached to the µth cascade.

Following [5, 6], we write the relative fluid velocity Vµk(s, t) as

Vµk(s, t) =
∞∑
n=0

n∑
r=0

[uµnr(s) cos r(ωt+ kψµ) + vµnr(s) sin (ωt+ kψµ)] exp (−2πn∆/r), (8)

where ω = 2πu/L and ψµ = (−1)µ2π/Nµ.
In representation (5), let the point z tend from the flow field to the kth blade of the µth cascade. Using the

limiting Plemelj–Sokhotskii formulas, expressions (6), and the nonpenetration condition (2) and expanding coth z
in the power series

coth z + 1 =


2
∞∑
n=0

exp (−2nz), Real z > 0,

−2
∞∑
n=1

exp (2nz), Real z < 0,
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we obtain the following system of recurrent formulas for the coefficients in the series expansion of the fluid velocity
(8):

K1r(U1nr) = Π1nr(U2pq, p ∈ 1, n− 1, q ∈ 0, p),

K2r(U2nr) = Π2nr(U1pq, p ∈ 1, n, q ∈ 0, p).
(9)

Here Uµnr = uµnr + jvµnr (µ = 1, 2; i 6= j).
In system (9), the integral operator Kµr has the form

Kµr(Uµnr) =
1
2
Uµnr(σ)− exp (iαµ(σ))

2Li

∫
Lµ

Uµnr(s)
Nµ−1∑
m=0

exp (−jrmψµ)

×
[
cothπ

(zµ − ζµ
L

− i m
Nµ

)
+ 1−Rµr(σ)

]
ds,

where

Rµr(σ) =

∞∫
0

jrωt

V0µ(τ)
exp (jωrT (τ))

[
cothπ

(zµ − ζµ(τ)
L

− i m
Nµ

)
+ 1
]
dτ.

The right sides of Eqs. (9) Πµnr are defined by the equalities

Π100(σ) = V−∞ exp (iα1(σ)),

Π200(σ) =
exp (iα1(σ))

h1i

∫
L1

u100(s) ds+ (V−∞ + iu) exp (iα2(σ)) +K20[A0(σ)],

Πµnr(σ) = (−1)µδ2æνr exp (iαµ(σ))

[
(1− ij)

n−E(ν/2)∑
k=æ1

Pn−kνk (k − n+ r)ϕµ(σ, n− k)

+ (1 + ij)
n−E(ν/2)∑
k=æ2

Pn−kνk (k − n− r)ϕµ(σ, n− k)

]
+ (2− ν)K2r[Ar(σ)],

ϕµ(σ, k) = exp [(−1)ν2πk (ξµ(σ) + iηµ(σ)) /L],

P kµn(r) =



1
2hµi

∫
Lµ

[Uµnr(σ)− (2− ν)Anr(σ)]ϕµ(σ, k) dσ, r > 0,

1
hµi

∫
Lµ

[Uµn0(σ)− (2− ν)An0(σ)]ϕµ(σ, k) dσ, r = 0,

1
2hµi

∫
Lµ

[Ūµnl(σ)− (2− ν)Ānl(σ)]ϕµ(σ, k) dσ, l = −r > 0,

Anr(σ) = δnrfr(σ) exp (iα2(σ)) exp (2πn∆/L) + J1nr(σ) exp (iα2(σ)),

æ1 = E
(n− r + 1

2

)
, æ2 = E

(n+ r + 1
2

)
,

æµr =
1
Nµ

Nµ∑
m=0

exp
(
± i2πrm

Nµ

)
=

{
1, r = r1Nµ,

r1 = 0, 1, 2, . . . ,
0, r 6= r1Nµ,

ν =

{
2, µ = 1,

1, µ = 2,
δk =

{
0.5, k = 0,

1, k 6= 0,
δnr =

{
0, n 6= r,

1, n = r.
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Fig. 2. Blade edge wakes.

Here E(x) is the whole part of the number x; the bar denotes quantities that are complex conjugate in j.
The functions fr(σ) and J1nr(σ) in the expression for Anr(σ) are the coefficients of the series expansions of

the functions Jm(σ, t) and J1m(σ, t):

Jm(σ, t) = J
(
z2(s) + imh2 + iut+

∆
2

)
=
∞∑
r=0

fr(σ) exp (−jr(ωt+mψ2)); (10)

J1m(σ, t) = J1

(
z2(s) + imh2 + iut+

∆
2

)
=
∞∑
n=0

∞∑
r=0

J1nr(σ) exp (−jr(ωt+mψ2)) exp
(
− 2πn∆

L

)
. (11)

The difference between the expressions obtained and those given in [6] is due to the addition of the terms
Rµr(σ) to the kernels of the operators Kµr. These terms are due to the upstream effect of the unsteady vortex
wakes behind the cascades and to the fact that the expressions for Πµnr(σ) contain additional terms defined by the
function J1nr, which arises when allowance is made for the diffusion of the unsteady wakes downstream of the first
cascade.

Definition of the Functions J(z) and J1(z, t). To define the function J(z), we use the known dependence
of the flow rate in the wake behind a single cascade (in the absence of cascade No. 2) on the coefficient of blade
losses ζbl (Fig. 2). Expressions for the coefficient fr of expansion (10) are given in [6].

To define the function J1(z, t), we use the approximate solution of the problem of diffusion of a vortex sheet
[9] (Fig. 2):

J1(z, t) =
V1√
π

[
Φ

(√
Re

4h1ξk
ηk

)
−
√
π

2
sign ηk

]
∂Γ1k

∂t1

∣∣∣
t1=t−ξk/V1

. (12)

Here Φ(θ) =

θ∫
0

exp (−θ2) dθ is the probability integral, Re = V1h1/ν is the Reynolds number, ν is the kinematic

viscosity, V1 is the complex fluid velocity at infinity ahead of the cascade, and ηk+iξk = z exp (iα), where α = argV1

and k = 0,±1,±2, . . . .
Expression (11) for the coefficients J1nr(σ) is obtained from (12) by a Fourier series expansion of J1 in the

variable y using (7) and (8) with conversion to the coordinate system of the second cascade. Finally, we have

J1nr(σ) =
β2∑
p=β1

Bp, n−|p|, r−p exp (−jpω1y2(σ)) exp
(2π|p|∆

L

)
, (13)

where

β1 =
[−n+ r + 1

2

]
, β2 =

[n+ r

2

]
, ω1 =

2π
L
,
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Fig. 3. Level of exciting forces versus axial clearance: solid curves refer to calculations by the
proposed model, dashed curves refer to calculations by the model of a quasisteady flow [6], points
are data of the experiment of [11] for n1 = 30.0 (1) and 23.34 sec−1 (2): (a) N1 = 9, N2 = 10,
τ1 = 0.71, τ2 = 1.33, and ζbl = 0.021; (b) N1 = 3, N2 = 10, τ1 = 0.64, τ2 = 1.33, and ζbl = 0.04.

Bp,k,l = −δ2æ1r

h1
jlωΓ1,k,|l|

∫
A(x2(σ) + ∆, y) exp

(jlω
V1

[(x2(σ) + ∆) cosα− y sinα]
)

exp (jpω1y) dy,

A(x, y) =
1√
π

[
Φ

(√
Re

4h1ξ0
η0

)
−
√
π

2
sign η0

]
;

Γ1nr are the coefficients of the expansion of the circulation Γ1m(s) in series (8):

Γ1m(s) =
∞∑
n=0

n∑
r=0

Γ1nr exp (−jr(ωt+mψ1)) exp
(−2πn∆

L

)
.

We note that, by virtue of the properties of the function Φ, the quantity A decreases rapidly
with distance from the wake axis [(y0, x2(σ) + ∆), where y0 = −(x2(σ) + ∆)/tgα], and to calculate
the coefficients Bpkl approximately, it suffices to perform integration over y in a narrow interval (y0 − ε,

y0 + ε), where ε determines the width of the unsteady wake in the y direction.
Thus, from formulas (9)–(13), we can sequentially determine the coefficients Uµnr of the expansion of the

relative velocity Vµm on the blades in series (8). The blade pressure, total forces, and the moment are further
obtained using the Cauchy–Lagrange integral.

Program and Calculation Results. The above method is implemented in the form of a program for
calculating the unsteady aerodynamic characteristics of blade cascades. The program is written in FORTRAN, and
the time of calculation of one version on a Pentium-II computer is 1–5 min, depending on the computation version
and the number of points of division of the initial blades. We note that the calculation time depends weakly on
the number of blades in the general period of cascades (in contrast to methods of direct calculation of the Euler or
Navier–Stokes equations).

Figure 3 shows results of our calculation and data of the experiment of [11]. The level of exciting forces on
the blades of the second cascade are plotted on the ordinate:

λ2y = (max Y2(t)−min Y2(t))/Y 0
2 , t ∈ [0, T2].

Here T2 = 2πh1/u and Y2(t) is the circumferential component of the force on the blades and Y 0
2 is its mean value.
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Fig. 4. Level of exciting forces versus axial
clearance for large deflection angle of the first
cascade (N1 = N2 = 1, τ1 = τ2 = 1, ζbl =
0.03, and q = u/V−∞ = 3.595): the solid curve
refers to calculation for the proposed model
and the dashed curve refers to calculation for
the quasisteady flow model [6].

An analysis of the curves in Fig. 3 shows that the unsteady vortex wakes make a considerable contribution
to the level of unsteady exciting forces on the blades. Comparison of the calculation results and the experimental
data of [11] shows that in Fig. 3a, the experimental data for various speeds of rotation of the rotor n1 differ greatly
and calculations using the proposed model are in good agreement with experiment only for n1 = 23.34 sec−1. In
Fig. 3b, the observed data for various values of n1 practically coincide. Calculations for the proposed model are
in better quantitative agreement with the experiment than calculations using the model of a quasisteady flow [6].
For moderate axial clearances (∆/h1 ≈ 0.1–0.3) and for small clearances (∆/h1 < 0.1), the calculations “trace” the
qualitative behavior of the unsteady force, though at a different quantitative level. We note that in the literature,
except in [11], there are no experimental data on the unsteady forces on row blades moving relative to one another.

An important feature of behavior of unsteady forces during interaction of cascades is the experimental
nonmonotonic dependence of the values of λ2y on the axial clearance for large deflection angles of the first cascade.
In [12], this phenomenon is explained by superimposition of the potential perturbation and vortex perturbation (due
to steady vortex wakes J) of the flow using a model of quasisteady flow around cascades. Since in the unsteady
flow model considered, the zones of perturbed velocity due to steady J and unsteady J1 vortex wakes practically
coincide, the dependence λ2y on the axial clearance should be nonmonotonic in the same cases as in the model
of quasisteady flow around cascades. A comparison of the curves in Fig. 4 shows that the range of values of the
axial clearance ∆ in which the level of exciting forces λ2y is nonmonotonic is almost the same in calculations using
the proposed model and the quasisteady flow model. The quantitative difference is explained by the fact that
pressure calculations for the quasisteady model ignore the term ∂ϕ/∂t, which in the present calculation version
makes a considerable contribution because of the large deflection angle of cascade No. 1 (q = u/V−∞ = 3.595 and
the Strouchal number Sh = ωL/V−∞ = 2πq, which characterizes the unsteadiness level, is large).

The main result of the present work is the development of a program that takes into account the diffusion of
unsteady vortex wakes behind blade cascades and can be useful in routine calculations of aerodynamic characteristics
of blades on personal computers. In further work, we are planning to use the program to calculate a system of three
cascades stator–rotor–stator and to compare the flow pressure and velocity fields with experiment [8].

The author is grateful to V. É. Saren for the proposed idea of solving the problem in the present formulation
and for continuous attention to the work.
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